On the Classification of Binary Goppa Codes

Michele Elia, Giorgio Taricco and Emanuele Viterbo

1Dipartimento di Elettronica
Politecnico di Torino
10129 Torino, ITALY
Email: viterbo@polito.it

Abstract
It is shown that binary Goppa codes with location set \(\mathbb{F}_q \) and separable polynomials of degree 2, 3 and 4 fall into a few equivalence classes characterized by canonical forms of these polynomials.

1. Introduction
The complexity of many cryptography systems that use Goppa codes depends on a code equivalence notion according to which codes are equivalent if they differ only in the order of the symbols, [7, p. 24]. Furthermore, it is well known that, these equivalent codes share several properties related to their performance: i) minimum distance; ii) weight distribution; iii) minimum-weight coset leader weight distribution; iv) maximum-likelihood decoding word error probability. It is an objective of this paper to specify explicitly the classification of Goppa codes induced by this equivalence. Let \(\mathcal{G}_l = \{ \Gamma(L, G(z)) \} \) denote the set of binary separable Goppa codes \(\Gamma(L, G(z)) \) with the error location set \(L = \{ \gamma_i \in \mathbb{F}_q \}_{i=0}^{n-1} \) being an ordered set of the elements of \(\mathbb{F}_q \), and Goppa polynomial \(G(z) = \prod_{i=1}^s G_i(z) \) taken from the set \(\mathcal{P}_l \) of the separable polynomials of degree \(t \), whose factors \(G_i(z) \) are distinct irreducible polynomials over \(\mathbb{F}_q \) of degree \(t \geq 2 \). Dimension \(k = 2^m - mt \) and minimum distance \(d = 2t + 1 \) of these Goppa codes are known, [8, 6]. Denoting with \(S_n = \{ \pi \} \) the symmetric group which is defined to act on \(L \) as \(\pi \Gamma(L) = \pi \{ \gamma_1, \ldots, \gamma_n \} = \{ \gamma_{\pi(1)}, \ldots, \gamma_{\pi(n)} \} \), two binary Goppa codes \(\Gamma(L, G(z)) \) and \(\Gamma(L, \hat{G}(z)) \) are equivalent if and only if a permutation \(\pi \) exists such that

\[
\Gamma(\pi(L), \hat{G}(z)) = \Gamma(L, G(z)) \quad (1)
\]

and we will write \(\equiv \gamma \colon \Gamma(L, G(z)) \sim \Gamma(L, \hat{G}(z)) \). The relation \(\equiv \gamma \) partitions the set \(\mathcal{G}_l \) of Goppa codes and \(\mathcal{P}_l \) into a set of classes that correspond one-to-one. The main theorem proved in this paper is basic to specify the partition of \(\mathcal{P}_l \), and it is essentially the converse of the following propositions whose proof is straightforward.

Proposition 1 If \(\hat{G}(z) \) can be obtained from \(G(z) \) by the linear transformation \(z \to az + b \) then \(\Gamma(L, \hat{G}(z)) \) is equivalent to \(\Gamma(L, G(z)) \), the permutation of \(L \) being defined by the permutation polynomial \(f(z) = \frac{az+b}{a} \).

Proposition 2 If \(\hat{G}(z) \) can be obtained from \(G(z) \) by the Tschebyscheff transformation \(z \to z^2 \) induced by the Frobenius automorphism of \(\mathbb{F}_q \), then \(\Gamma(L, \hat{G}(z)) \) is equivalent to \(\Gamma(L, G(z)) \), the permutation of \(L \) being defined by the permutation polynomial \(f(z) = z^{2^{m-1}} \).

Tschebyscheff transformations, which are known to be the most general transformations for polynomials [1], are defined as rational algebraic variable substitutions:

\[
\phi : z \to \frac{a_0 + \ldots + a_{r-1} z^{r-1}}{(b_0 + \ldots + b_{s-1} z^{s-1})}
\]

that transforms a polynomial \(G(z) \) in a polynomial \(\hat{G}(y) \) of the same degree \(t \) whose roots \(y_1 \) are related to the roots \(z_i \) of \(G(z) \) as \(y_i = \phi(z_i) \). It is shown in [1, p. 171] that any rational algebraic Tschebyscheff transformation \(\phi \) for \(G(z) \) of degree \(t \) can be reduced to a polynomial transformation of degree \(t - 1 \). In particular any Tschebyscheff transformation for \(G(z) \) can always be considered modulo \(G(z) \).

Given a permutation polynomial of \(\mathbb{F}_q \), we associate a map \(f : c \to f(c) \) from \(\mathbb{F}_q \) into \(\mathbb{F}_q \) which is a permutation \(\pi \) of \(\mathbb{F}_q \). Let \(\pi(\gamma) \) denote the image of \(\gamma \in \mathbb{F}_q \) under the permutation \(\pi \), then any permutation \(\pi \) of \(\mathbb{F}_q \) can be described by a polynomial \(f_\pi(z) \) of degree not greater than \(q - 2 \), and with this assumption the correspondence \(\pi \leftrightarrow f_\pi(z) \) is one-to-one. The composition \(\chi(z) \) of \(f_\pi(z) \) is \(\chi(z) \) of two permutation polynomials
is a permutation polynomial corresponding to the composition \(\theta = \pi \circ \sigma \) of permutations. Since every field element is a zero of \(z^q - z \), two permutation polynomials differing by a multiple of \(z^q - z \) produce the same permutation. The simplest permutation polynomials are of the form \(az + b \) with \(a, b \in \mathbb{F}_q \) and \(a \neq 0 \), and every \(z^i \), \(i = 0, 1, \ldots, (m - 1) \), whereas \(z^3 \) is a normalized permutation polynomial when \(m \) is odd. A fairly complete description of permutation polynomials is given in Lidl and Niederreiter's book [4].

2. General Results

The proof of the fundamental theorem given in this section is based on the following Lemma.

Lemma 1 If the irreducible polynomial \(\tilde{G}(z) \) over \(\mathbb{F}_q \) is obtained from the irreducible polynomial \(G(z) \) by the Tschirnhaus transformation \(\Xi \) associated to the substitution polynomial \(y = f(z) \), where the coefficients of \(f(z) \) are in \(\mathbb{F}_q \), then \(\tilde{G}(f(z)) \) is divisible by \(G(z) \).

Proof. The Tschirnhaus transformation \(\Xi \) of \(G(z) \) produces a polynomial \(\tilde{G}(z) \) whose roots \(\xi \)'s are \(\xi = f(\zeta) \) where \(\zeta \)'s are the roots of \(G(z) \). Therefore \(\tilde{G}(f(z)) = 0 \) implies that \(G(z) \) divides \(\tilde{G}(z) \). \(\square \)

Theorem 1 If \(\Gamma(\pi(\tilde{L}), \tilde{G}(z)) = \Gamma(L, G(z)) \) for some permutation \(\pi \), then a variable substitution \(y = f_\pi(z) \) exists that allows us to obtain the parity check equation

\[
\sum_{i=0}^{n-1} \frac{c_i}{z - \pi(\gamma_i)} \equiv 0 \mod \tilde{G}(z) \tag{2}
\]

that defines the code \(\Gamma(\pi(\tilde{L}), \tilde{G}(z)) \), from the parity check equation

\[
\sum_{i=0}^{n-1} \frac{c_i}{z - \gamma_i} \equiv 0 \mod G(z) \tag{3}
\]

that defines the code \(\Gamma(L, G(z)) \). The Tschirnhaus transformation \(\Xi \) such that \(\Xi(G(z)) = \tilde{G}(z) \) is specified by a substitution of the form \(y = f_\pi(z) = az^{2^i} + b \).

Proof. For binary separable Goppa codes equation (3) can be written as

\[
\sum_{i=0}^{n-1} \frac{c_i}{z - \gamma_i} = \frac{B(z)}{A(z)} G(z)^2 \tag{4}
\]

and equation (2) can be written as

\[
\sum_{i=0}^{n-1} \frac{c_i}{z - \pi(\gamma_i)} = \frac{\tilde{B}(z)}{\tilde{A}(z)} \tilde{G}(z)^2 \tag{5}
\]

Let \(\xi \) and \(\zeta \) denote a root of \(\tilde{G}(z) \) and \(G(z) \) respectively. A permutation polynomial \(f_\pi(z) \) with coefficients in \(\mathbb{F}_q \) exists such that \(\xi = f_\pi(\zeta) \) and

\[
f_\pi(\gamma) = \pi(\gamma) \text{ for all } \gamma \in \mathbb{F}_q
\]

Therefore, substituting \(f_\pi(z) \) for \(z \) in (5) we obtain

\[
\sum_{i=0}^{n-1} \frac{c_i}{f_\pi(z) - \pi(\gamma_i)} = \frac{\tilde{B}(f_\pi(z))}{\tilde{A}(f_\pi(z))} \tilde{G}(f_\pi(z))^2
\]

where \(G(f_\pi(z))^2 = G(z)^2 Q(z)^2 \) implies

\[
\sum_{i=0}^{n-1} \frac{1}{f_\pi(z) - \pi(\gamma_i)} \equiv 0 \mod G(z) \tag{6}
\]

Since \(f_\pi(\gamma) = \pi(\gamma) \), then \(f_\pi(z) - \pi(\gamma_i) = f_\pi(z) - f_\pi(\gamma) = (z - \gamma_i)R_\pi(z) \). Moreover equations (3) and (6) must imply one each other. Hence \(\gamma_i \) must be the only zero of \(f_\pi(z) - \pi(\gamma_i) \), which in turns forces \(f_\pi(z) \) to be of the form \(az^{2^i} + b \). This concludes the proof. \(\square \)

It follows that the only Tschirnhaus transformations \(\Xi \) relating Goppa polynomials of equivalent codes are produced compounding i) \(\Xi_1(z) = az + b \) and ii) \(\Xi_2(z) = z^2 \), and form a non-abelian group \(\mathcal{E} = \mathcal{C}_m \mathcal{L}_q \), by composition. \(\mathcal{E} \) is the semi-direct product of a cyclic group \(\mathcal{C}_m \) of order \(m \) consisting of the Frobenius transformations, and a group \(\mathcal{L}_q \) of linear transformations in one variable of order \((q - 1)q \).

3. Classification

The Goppa code \(\Gamma(L, G(z)) \) classification consists in specifying the canonical forms of the representative Goppa polynomials. For 2, 3 and 4 error-correcting codes, it is given in the three theorems below. Theorem 2 summarizes results presented in [5, 2] for double error-correcting Goppa codes with the only addition of the Goppa polynomial canonical forms for even and odd \(m \), thus the proof is omitted.

Theorem 2 Double-error correcting binary separable Goppa codes over \(\mathbb{F}_q \) with \(q = 2^m \) are all equivalent. The canonical form of \(G(z) \) can be expressed by

i) \(z^2 + z + g \) with \(g \in \mathbb{F}_{2^{2m}}^* \) and \(\text{Tr}(2^i)(g) = 1 \) for every \(m = 2^i(2h + 1) \), \(i \)

ii) \(z^2 + z + 1 \) for odd \(m \).

\(\text{Tr}(m)(x) \equiv \sum_{i=0}^{m-1} x^{2^i}. \)
The following theorem yields the equivalence classes for Goppa codes with irreducible $G(z)$ of degree 3. The situation is slightly more complex than for extended Goppa codes with irreducible $G(z)$ of degree 3 given in 5, Theorem 5).

Theorem 3 Triple-error correcting binary separable Goppa codes over F_q with $q = 2^m$ can be partitioned into the following equivalence classes:

For even $m = 2^{3*m}(2h+1)$ with $2h+1$ not divisible by 3, the canonical forms of $G(z)$ are two

1. $z^3 + g$, where g is not a cube in $GF(2^3)$, and we have only a single class;

2. $z^3 + z + g$ where g is chosen to make the polynomial irreducible. That is $Tr^{(m)}(1/g) = 0$ and the roots of $z^2 + z + \frac{1}{g^2} \neq 0$ are not cubes in $F_q^*.$

For odd $m = 3*(2h+1)$ with $2h+1$ not divisible by 3, the canonical form of $G(z)$ is $z^3 + z + g$, where $g ∈ GF(2^3)$ is chosen to make the polynomial irreducible. That is $Tr^{(m)}(1/g) = 1$ and the roots of $z^2 + z + \frac{1}{g^2} \neq 0$ are not cubes in $F_q^*.$

Proof. According to permutation polynomial composition the application to any Goppa polynomial $z^3 + a_1z^2 + a_2z + a_3$ of a linear transformation $y = az + b$ yields an equivalent code so that taking $b = a_1$ we have $y^3 + \frac{a_1}{a_2}y + \frac{a_3}{a_2}$ of the form $z^3 + g + y$, otherwise taking $a = \sqrt{a_1^2 + a_2}$ we obtain a polynomial of the form $z^3 + z + g.$ Now, it is necessary to deal with even and odd m separately.

Even m:

1. The polynomial $z^3 + g$ is irreducible if g is not a cube. In this case we have a single class because any polynomial $z^3 + g_a$ can be obtained from a single one by applying the two permitted transformations $y = az$ and $y = z^2.$

2. The polynomial $z^3 + z + g$ is irreducible if g is chosen as $Tr^{(m)}(1/g) = 0$ and the roots of $z^2 + z + \frac{1}{g^2} \neq 0$ are not cubes in $F_q^*.$ [3, p.23].

Odd m: The canonical form of $G(z)$ can be of the form $z^3 + z + g$, with $g ∈ GF(2^3)$ such that $Tr^{(m)}(1/g) = 1$ and the roots of $z^2 + z + \frac{1}{g^2} \neq 0$ are not cubes in $F_q^*.$ [3, p.23]. The form $z^3 + g$ is excluded because g is always a cube when m is odd.

Theorem 4 The set of four-error correcting binary separable Goppa codes over F_q have associated canonical Goppa polynomials, which are irreducible or product of two irreducible polynomials of second degree. They have one of the following forms:

i) Irreducible polynomials

even m:

\[
\begin{align*}
z^4 + z^2 + g_0z + g_1 & \quad \text{with} \quad Tr^{(m)}(1/g_0) = 1 \\
z^4 + z^3 + g_0z^2 + g_1 & \quad \text{with} \quad Tr^{(m)}(1/g_0) = 1
\end{align*}
\]

odd m:

\[
\begin{align*}
z^4 + z + g & \quad \text{with} \quad Tr^{(m)}(g) = 1 \\
z^4 + z^2 + g_0z + g_1 & \quad \text{with} \quad Tr^{(m)}(1/g_0) = 1 \\
z^4 + z^3 + g_0z^2 + g_1 & \quad \text{with} \quad Tr^{(m)}(1/g_0) = 1 \\
z^4 + z^3 + g & \quad \text{with} \quad Tr^{(m)}(\sqrt[4]{g}) = 1
\end{align*}
\]

ii) Reducible polynomials

even m:

\[
\begin{align*}
z^4 + z + g_0 = (z^2 + z + \beta)(z^2 + z + 1 + \beta)
\end{align*}
\]

where β is a root of $\beta^2 + \beta + g_0 = 0$ with $Tr^{(m)}(\beta) = 1$.

odd m:

\[
\begin{align*}
z^4 + g_0z^2 + (1 + g_0)z + g_0 = (z^2 + z + 1)(z^2 + z + g_0)
\end{align*}
\]

with $Tr^{(m)}(g_0) = 1$ and $g_0 ∈ F_{2^n}$ where m_1 is the smallest divisor of m greater than 1.

Proof. In order to find canonical forms for irreducible $G(z)$ having degree 4, we note that $z^3 + g_0z + g_1$ is always reducible over F_q when m is even. In fact, if ζ is a root of this polynomial, then $\zeta^4 + g_0\zeta^4 + g_1 = 0,$ and its q-power is $\zeta^{q^4} + g_0\zeta^{q^4} + g_1 = 0.$ Summing the two expressions we get

\[
\zeta^{q^4} + g_0\zeta^{q^4} + \zeta^4 + g_0\zeta^4 = (\zeta^q + \zeta)^4 + g_0(\zeta^q + \zeta) = 0.
\]

Therefore, $(\zeta^q + \zeta)$ is a root of $x^4 + g_0x,$ and if g_0 is not a cube in F_q, the only root of this polynomial in F_{q^4} is $x = 0,$ hence $\zeta^q + \zeta = 0$ implies $\zeta ∈ F_q,$ whereas if g_0 is a cube then we have other three roots in F_q of the form $\sqrt[4]{g_0}\omega^j$, with ω a cube root of unity, but the q-power of $\zeta^q + \zeta = \sqrt[4]{g_0}\omega^j$ is $\zeta^{q^4} + \zeta^q = \sqrt[4]{g_0}\omega^j$. Summing the two expressions we get $\zeta^{q^4} + \zeta = 0,$ which implies that $\zeta ∈ F_q^2$, hence $z^4 + g_0z + g_1$ is product of quadratic factors.

even m: In view of the above result the irreducible polynomial can have two forms: $z^4 + z^3 + g_0z + g_1.$
and $z^4 + z^3 + g_0 z^2 + g_1$, where a necessary condition for irreducibility is $\text{Tr}^{(m)}(1/g_0) = 1$. Moreover, for $z^4 + z^2 + g_0 z + g_1$ we can assume $g_1 = g + g_0 b + b^2 + b^4$
where g is a fixed elements such that $z^4 + z^2 + g_0 z + g$ is irreducible over \mathbb{F}_2. Whereas for $z^4 + z^3 + g_0 z^2 + g_1$
g_1 can still be selected as a function of g_0 and a fixed g, but the relation is more complex.

odd m: Since 4 and m are relatively prime, the polynomial $z^4 + z + g$ is irreducible if $\text{Tr}^{(m)}(g) = 1$. For the two forms $z^4 + z^2 + g_0 z + g_1$ and $z^4 + z^3 + g_0 z^2 + g_1$, the same argument used for even m applies. Lastly, the polynomial $z^4 + z^3 + g$ is irreducible if $\text{Tr}^{(m)}(g) = 1$.

even $m = 2^h(2h + 1)$: A reducible canonical Goppa polynomial is $G(z) = z^4 + z + g_0 = (z^2 + z + \beta)(z^2 + z + 1 + \beta)$ with $g_0 = \beta^2 + \beta$, $\beta \in \mathbb{F}_2$, and $\text{Tr}^{(m)}(g) = \text{Tr}^{(2^h)}(\beta) = 1$. This last condition assures that the quadratic factors are irreducible in \mathbb{F}_2.

odd $m = m_1 m_2$: A reducible canonical Goppa polynomial is

$$G(z) = z^4 + g z^2 + (1 + g) z + g = (z^2 + z + 1)(z^2 + z + g)$$

with $\text{Tr}^{(m_1)}(g) = 1$, where g is taken into $\mathbb{F}_{2^m_1} \neq \mathbb{F}_2$ with $m_1 > 1$ as small as possible, and $\text{Tr}^{(m_1)}(g) = 1$ to make irreducible $z^2 + z + g$ in both $\mathbb{F}_{2^m_1}$ and \mathbb{F}_2.

Let us remark that when m is odd, polynomials of the form $z^4 + az + b$ cannot split into quadratic irreducible factors, these polynomials are either irreducible or completely reducible.

4. Conclusions

Let us point out that, the above results apply only to codes with length 2^m, in fact for the extended Goppa codes with length $2^m + 1$, birational Tschrhausen transformations are possible, [5]. Secondly, let us observe that, if we consider only irreducible Goppa polynomials, then $|\mathcal{P}_t| = N(t, q)$, the number of distinct monic polynomials of degree t which are irreducible over \mathbb{F}_q (see [4]). Thus, the number of partition subsets of \mathcal{P}_t is lower bounded by $N(t, q)/[mq(q - 1)]$. When $G(z)$ factors, the computation is more complex, but similar bounds can still be found.

We have been able to specify relationships between $G(z)$ and $G'(z)$ that yield equivalent Goppa codes $\Gamma(L, G(z))$ and $\Gamma(L, G'(z))$. Therefore, the classes of $\Gamma(L, G(z))$ codes correcting 2, 3 and 4 errors, are explicitly given, distinguishing the forms of the Goppa polynomials for even and odd m. Note that distinct polynomials identify different classes.

References

