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Line Codes Generated by Finite Coxeter Groups
Ezio Biglieri , Life Fellow, IEEE, and Emanuele Viterbo , Fellow, IEEE

Abstract— Using an algebraic approach based on the theory
of Coxeter groups, we design, and describe the performance
of, a class of line codes derived from permutation modulation,
useful for parallel transmission of b bits over b + 1 wires, and
admitting especially simple encoding and decoding algorithms.
With these codes, resistance to common-mode noise is obtained
by using codewords whose components sum to zero, simultaneous
switching output noise is reduced by using constant-energy
signals, and the effects of intersymbol interference are reduced by
having decisions based on only two values at the input of the final
slicers. Codebook design is based on the theory of Group Codes
for the Gaussian Channel, as specialized to Coxeter matrix groups
generated by reflections in orthogonal hyperplanes. A number of
designs are exhibited, some of them being novel or improving on
previously obtained codes.

Index Terms— Line coding, chordal codes, group codes for the
Gaussian channels, permutation modulation, Coxeter groups.

I. INTRODUCTION

IN THIS paper we describe the design of vector line codes
allowing an especially simple maximum-likelihood (ML)

detection procedure. This consists of a linear transformation of
the vector received at the output of an additive white Gaussian
noise (AWGN) channel, followed by a binary slicer (a binary
hard quantizer). The design is based on the selection of a
subset of a permutation modulation (PM) codebook being
the direct product of binary antipodal signaling schemes, and
hence having a geometrical representation in the form of a
multidimensional orthotope (or hyper-rectangle). The encoder
can also be implemented as a linear transformation of the
source (binary) vector.

Transmission on parallel wireline links (as those used to
interconnect integrated circuits, or a television set to a set-
top box) is affected by disturbances placing a number of
constraints on the design of the signaling scheme. The key
problem here is the design of line codes allowing the trans-
mission of b bits over w � b wires and using a codebook W
subject to some constraints to be detailed later. The general
scheme is shown in Fig. 1. Here, b binary information symbols
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Fig. 1. General scheme of vector coding.

Fig. 2. Binary unipolar (NRZ) and binary differential signaling (DS) circuits.

±1 are input in parallel to the (w, b) line encoder, which is a
one-to-one map from {±1}b to the codebook W ⊆ R

w . This
encoder outputs a code vector w with w real components,
which is added to white Gaussian noise to obtain vector y.
Vector y is processed by a detector whose output is an estimate
�b of the information vector.

Fig. 2 illustrates the two basic circuits for wired binary
communications: (a) unipolar signaling and (b) differential
signaling. The transmitter sends a current signal i through one
wire in (a) and two wires in (b), and the receiver measures
a voltage v across the resistor R. In (a) a threshold voltage
Vt = RI/2 is used by a comparator to detect the binary
information, while in (b) a zero-threshold voltage Vt = 0
is used. Since the power dissipated on the resistor R is Ri2,
on the average (a) uses half of the power of (b), but reduces by
a factor of two the distance to the threshold. Since the thermal
noise produced by the resistor is the same for both (a) and (b),
this implies a power gain of 1.5dB of (b) over (a) to achieve
the same performance.

Other types of impairments may heavily affect the reliability
of unipolar signaling: (i) Coupling of electromagnetic interfer-
ence with the transmission wire (common-mode disturbances),
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since the return current goes through the ground plane, and
(ii) Power supply fluctuations due to simultaneous switching
noise (SSN), which affect the stability of the threshold voltage.
On the other hand, differential signaling provides common-
mode rejection of (i), and the zero threshold is insensitive
to (ii) because the total current drawn from the power supply
is kept constant (for further details see, for example, [1], [7],
and [9]). The advantages of differential signaling (DS) come at
the price of a reduction of the wire efficiency from 1 bit/wire
to 0.5 bit/wire, and an increase of the complexity needed by
the transmitter to drive the currents. Recent work (partially
listed among the References below) has focused on the design
of signaling schemes that retain the advantages of DS while
improving wire efficiency.

The circuit for a (3, 2) line code receiver was illustrated
in [3]. In general, the receiver is realized by a star of w
resistors with a common center node, where the transmitted
zero-sum currents converge to reduce the overall SSN. The w
codeword components represent current signals at the transmit-
ter on w wires, and the receiver uses zero-voltage comparators
across

�w
2

�

resistor pairs. These comparators determine the
sign of the differences between all pairs of components of
the received vector (as illustrated in next Section) in order to
provide the sorting order of these components.

In this paper we take an algebraic/geometric approach to the
design and analysis of line coding schemes transmitting b bits
over w = b + 1 wires. Our work was motivated by the inven-
tion of chordal codes [10]–[12], [21], [25], [26]. With these
codes a matrix with orthogonal rows can transform a suitable
subset of a PM vector set [27] into a signal constellation
whose geometric representation in the Euclidean space is a b-
dimensional orthotope, which leads to a simple ML decoding
algorithm based on one binary slicer per wire. Code design
accounts for several types of impairments that may be present
besides additive white Gaussian noise. Specifically, resistance
to common-mode noise is obtained by using code words whose
components are balanced (i.e., sum to zero), simultaneous
switching output noise is reduced by using constant-energy
signals, and the effects of intersymbol interference are reduced
by having only two amplitude values at the input of each
slicer [10], [12]. The design method developed in this paper
is based on the theory of Group Codes for the Gaussian
Channel [28], as specialized to groups generated by reflections
in orthogonal hyperplanes (see also [19], [23]).

After examining a simple example for motiva-
tion (Section II), a general theory is expounded in Section III.
Design examples are shown in Section IV, while performance
evaluation is presented in Section V. Section VI deals with
the optimization of the design, and additional remarks are
presented in Section VII.

II. AN EXAMPLE FOR MOTIVATION AND ILLUSTRATION

An early approach to the code design problem described in
previous Section was taken in [21], where a coding scheme
based on a number of wires greater than 2 and having a
wire efficiency 2/3 bit/wire was advocated. This scheme was
generalized by Abbasfar [1], where a multiwire (“vector”)
DS scheme was designed. Under the assumption that the

transmitted amplitudes are ±1, the number of +1 (and hence
of −1) in all transmitted vectors is kept constant, which
makes this signaling scheme balanced. An example of this
generalized differential vector signaling scheme is provided
by the following set of 6 vectors (the codebook) used for
transmission of log2 6 bits over w = 4 wires. Exhibiting
the codebook in the form of a matrix whose rows are the
codewords, we have

W =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

+1 −1 +1 −1
−1 +1 +1 −1
−1 −1 +1 +1
+1 −1 −1 +1
−1 +1 −1 +1
+1 +1 −1 −1

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(1)

Vectors (1) form a Variant-I PM set [9], [27], [30], obtained
as the set of all the permutations of an initial vector
(−1,−1,+1,+1). In general, a (Variant-I) PM codebook in
R

w is obtained as the set of all the distinct permutations of
an initial w-vector w1. Assuming that w1 has r distinct com-
ponents with multiplicities m1, . . . , mr , and

�r
i=1 mi = w,

these permutations are in number of w!/(m1!m2! · · · mr !).
A peculiar feature of PM is that optimum (ML) detection
over the additive white Gaussian noise (AWGN) channel is
especially simple. In fact, to decode the received w-vector y
received from a PM codebook, the ML receiver need only
arrange its coordinates in decreasing order. This is equivalent
to finding the signs of the

�w
2

�

differences between the com-
ponents of y, and comparing these signs with the entries of
a lookup table (notice also that the requirement of balanced
vectors in the codebook words leads to the optimality of
the PM scheme, in the sense discussed in [2]—more on this
in Section VI).

Now, line codes based on the PM scheme may be improved
upon if a codebook W can be found such that: (i) It includes a
number of codewords equal to a power of 2, so that |W| = 2b,
(ii) Only b signs of linear expressions need be computed for
ML detection, (iii) These signs are the source symbols, so that
no lookup table is needed by the decoder, and (iv) Encoding
can be obtained by a linear operation on source symbols.
Line codes satisfying conditions (i)–(iv) were designed by
Shokrollahi et al. (see [1], [10]–[12], [26], and references
within). In this paper we derive a general theory of these
codes, based on the concepts of Group Codes for the Gaussian
Channel and of Coxeter groups.

We start with a relatively simple design example whose
illustration will motivate the theory developed in the balance of
this paper. Consider the PM codebook with 6 words1 obtained
as all the permutation of the components of the initial vector
w1 = (−1, 0, 1). Denoting by i - j the difference between the
i th and the j th components of a vector, in the absence of noise
the word is identified by the signs of the differences 1-2, 2-3,
and 1-3 between pairs of its components. The situation is
summarized in Table I, where those differences are shown for
all codebook vectors, as received in the absence of noise.

1In the following, to describe one element of W we shall use interchange-
ably the terms word, vector, or point.
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TABLE I

VECTORS OF A PM CODEBOOK AND DIFFERENCES
BETWEEN THEIR COMPONENTS

We can interpret the operations summarized in Table I as a
linear mapping L between the original codebook W and its
transformed version W � � LW , whose words are listed in the
right part of Table I. Since this transformation is one-to-one,
W � can be detected in lieu of the original codebook W .
For this observation to be practically useful, we need to
consider PM schemes such that decoding W � in the presence
of noise is equivalent to decoding W , but simpler. The simplest
situation, which is the one on which we shall focus our
attention in the balance of this paper, occurs when the words
of codebook W � (interpreted as points in the 3-dimensional
Euclidean space R

3) are vertices of a 3-orthotope. If all these
vertices are included (which is obtained when the number of
codewords chosen is a power of 2, viz., 2b), then W � can
be optimally detected by simply taking the sign of each entry
of the transformed vector Ly, i.e., feeding it to a slicer. The
slicer outputs are elements of {±1}b. Thus, the ML receiver in
this situation consists of a linear transformation L followed by
b slicers. This fact can also be used for encoding purposes:
in fact, even encoding can be done linearly, by applying a
suitable linear transformation to any vector containing, in an
appropriate form to be described later, b entries of the form
(±1,±1, . . . ,±1).2

We now proceed to explain in detail how the concept above
can be implemented. The tips of the 6 vectors of Table I are
the vertices of a regular hexagon lying on the surface of a
3-dimensional sphere with radius

√
2, as shown in Fig. 3.

Since all points of w ∈ W lie on the hyperplane �w, 1� = 0,
where 1 denotes the vector all of whose components are 1,
we may project the points of W on this plane to obtain a
2-dimensional representation. A general way of performing
this projection was described by Peterson [24]. The projection
of the n-vector w on the plane described by the scalar product
�w, 1� = 0 is obtained by computing wA, where A is the n×n
projection matrix

A =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

1 + β β β · · · β γ
β 1 + β β · · · β γ

. . .

β β β · · · 1 + β γ
γ γ γ · · · γ γ

⎤

⎥

⎥

⎥

⎥

⎥

⎦

(2)

2It was observed by a reviewer that the motivation for reducing the shape
of the signal constellation to an orthotope can also follow from complexity
considerations. In fact, the original PM here needs three slicers to transmit
log2(6) bits, while with the corresponding orthotope only two slicers are
needed to transmit log2(4) bits. Thus the number of bits per slicer increases
from log2(6)/3 � 0.86 to 1 bits per slicer.

Fig. 3. Geometric representation of codebook in Table I.

Fig. 4. 2-dimensional geometric representation of codebook in Table I.

where γ � 1/
√

n and β � −1/(n − √
n). Using this

with n = 3, the code vectors are transformed into vectors
whose third component is zero, thus reducing the codebook
representation to a 2-dimensional space, as illustrated in Fig. 4.

In the specific case we are now handling, the reduced
codebook with 2b = 4 words whose geometric representation
has a rectangular shape is obtained by removing vectors ➂

and ➄ from the 6-vector PM set of Table I. In matrix form:

W =

⎡

⎢

⎢

⎣

−1 0 1
−1 1 0

1 0 −1
1 −1 0

⎤

⎥

⎥

⎦

➀

➁
➃

➅

(3)

The ML (congruent) decision regions of this codebook are
defined by their boundary planes, as obtained from the
equations

�y, (wi − w j )� = 0 (4)

where wi , w j are neighbors. Eq. (4) expresses the fact that
the separating plane is orthogonal to the line joining wi and
w j , or, equivalently, that y has the same distance from wi and
w j . The plane separating neighbors w1 and w2 has equation
y2 − y3 = 0, while that separating w1 and w6 has equation
2y1 − y2 − y3 = 0, or, equivalently, (y1 − y2) + (y1 − y3) = 0
(Fig. 5).

The ML detection procedure is summarized in Table II.
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Fig. 5. 2-dimensional representation of codebook (3). Dashed lines: Sepa-
rators of ML decision regions based on the signs of 2-3 and of (1-2) + (1-3).

TABLE II

TRANSFORMATION OF CODEBOOK W INTO ONTO THE VECTOR SET W�
WITH 4 ELEMENTS ±3,±1, THE FOUR VERTICES OF A RECTANGLE

This Table describes the transformation L which maps the
codebook W onto the vector set W� with 4 elements ±3,±1,
the four vertices of a rectangle. The decision regions of the
transformed codebook are delimited by the coordinate axes
in the 2-dimensional plane, and hence the transmitted vector
can be detected by simply slicing the components of Ly,
as indicated above. The linear transformation of W is given
by the detection matrix

M =
⎡

⎣

1 1 1
2 −1 −1
0 1 −1

⎤

⎦ (5)

which has orthogonal rows (notice that M itself is not orthog-
onal, so that transformation by M alters the scales of the
coordinate axes). Its first row reflects the fact that the sum
of the components of each row of W is zero (balanced
codewords), the second row corresponds to the difference
(1-2) + (1-3), and the third row to the difference (2-3). Thus,
we have

WMT =

⎡

⎢

⎢

⎣

0 −3 −1
0 −3 1
0 3 1
0 3 −1

⎤

⎥

⎥

⎦

(6)

which expresses the transformation of the original vector set
W into the new vector set whose two-dimensional representa-
tion is shown in Fig. 6. In turn, this vector set can be detected
using simply the signs of its second and third components.
Conversely, the linear coding procedure transforms the infor-
mation matrix

B = sgn(WMT) =

⎡

⎢

⎢

⎣

0 −1 −1
0 −1 1
0 1 1
0 1 −1

⎤

⎥

⎥

⎦

(7)

Fig. 6. 2-dimensional representation of the linearly transformed
codebook WMT.

into W as

W = BK (8)

where K = 1
2 M. Notice that L transforms the 3-dimensional

codebook W into the 2-dimensional codebook W�. Thus,
the inverse transformation mapping the 4 information symbols
into W should be a map between a 2-dimensional and a
3-dimensional space. This explains why each row of B has
a “zero” prepended.

A. Towards a General Theory

We now describe how codebook (3) can be generated
directly, i.e., without necessarily thinking of it as a subset of a
PM set. The basic requirement here is that W be a group code
for the Gaussian channel [28]. This is generated by the action
of a group of real orthogonal matrices Oi , i = 1, . . . , 2b,
on an initial vector w1, and results into Voronoi regions that
are congruent. The geometric structure we are interested in is
that of an orthotope, which suggests that the Voronoi regions
be bounded by orthogonal hyperplanes. In the example we are
examining, the two matrices

O1 =
⎡

⎣

1 0 0
0 0 1
0 1 0

⎤

⎦ O2 = 1

3

⎡

⎣

−1 2 2
2 2 −1
2 −1 2

⎤

⎦ (9)

satisfy the condition O2
1 = O2

2 = I, and represent reflections
in the orthogonal planes with normal vectors w1 − w2 =
(0,−1, 1) and w1 − w6 = (−2, 1, 1), respectively. They
commute, and (O1O2)

2 = 1. Thus, O1 and O2 generate the
matrix group of order 4 with elements I, O1, O1O2, O2. The
product of these matrices by the initial vector (−1, 0, 1) yields
the codebook (3).

III. BASIC THEORY

Being guided by the considerations developed in Section II,
we now expound the general theory leading to line codes
in the shape of orthotopes. Our approach, based on finite
reflection groups, is chosen as being in the same framework
of [20] and [23]. The appropriate mathematical tool is the
theory of finite Coxeter groups. These [5], [7], [8], [13], [14]
are defined by generators and relations. A finite Coxeter
group G has a presentation with generator set R = {Ri } and
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relations (Ri R j )
m(i, j ) = I , where Ri , R j are group elements,

I denotes the identity element of G, and m(i, j) are integers.
In particular, m(i, i) = 1, and m(i, j) = 2 if and only if Ri and
R j commute. A Coxeter group has a convenient description
in terms of a graph having as nodes the elements of R and as
edges the unordered pairs {Ri , R j } such that m(i, j) ≥ 3. The
edges with m(i, j) ≥ 4 are labeled by that number. The group
is irreducible if its Coxeter graph is connected. For example,
the graph with n isolated nodes

• • • · · · • • (10)

is the Coxeter graph of a group isomorphic to Z
n
2 of order 2n .

The graph

• • • · · · • • (11)

with nodes labeled R1, R2, …, Rn−1, is the Coxeter graph
of the symmetric group Sn whose generators are the adjacent
transpositions Ri = (i, i + 1), 1 ≤ i ≤ n.

A reflection on the Euclidean space R
n is a linear trans-

formation of R
n of codimension 1, called its mirror and

having a nontrivial eigenvector with eigenvalue −1, called
a root of the reflection. A reflection can be represented by
the matrix I − 2δδT, where δ is the corresponding unit-norm
root vector normal to the mirror plane. Coxeter groups are
generated by reflections, so that each node in the Coxeter graph
corresponds to a reflection. In particular, when m(i, j) = 2
the corresponding reflections are in orthogonal planes. Thus,
we are especially interested in groups with Coxeter graphs
of the form (10) whose elements are faithfully represented
by (b + 1) × (b + 1) matrices corresponding to reflections
in mutually orthogonal hyperplanes. Once such a group with
order 2b is found, the line code W is obtained by applying
the matrix group to an initial (b + 1)-vector w1. As a result,
we obtain a line code whose 2b Voronoi regions are congruent
and bounded by orthogonal hyperplanes. In geometric terms,
the line code turns out to be equivalent to a Cartesian product
of binary antipodal signals, with an added dimension allowing
the codewords to be balanced.

To generate from a PM set the Coxeter group we need,
we advocate the following procedure. Start from a balanced
initial (b+1)-vector w1, and choose b root permutations 3 wi ,
i = 2, . . . , b + 1, of w1 such that the b unit-norm (column)
vectors

δi � w1 − w(i+1)

�w1 − w(i+1)� , i = 1, . . . , b (12)

are mutually orthogonal. (Section VI describes an algorithm
to select these root permutations.) Next, the corresponding
reflection matrices

Oi � I − 2δiδ
T
i (13)

are computed. Direct calculation shows that O2
i =

(Oi O j )
2 = I, so that these matrices generate a Coxeter matrix

group isomorphic to a power of Z2. The group code W is
obtained by applying this matrix group to w1 [28]. From now

3With an abuse of terminology, we identify a permutation with the vector
obtained by permuting the components of w1.

Fig. 7. 3-dimensional Voronoi region for a orthotope-shaped codebook.

on, we shall describe the group code by listing its vectors as
rows of the 2b × (b + 1) matrix W.

Since the Voronoi region associated with a point wi ∈ W
is the set of points lying closer to wi than to any other w j ,
j �= i , from the equality �y − wi� = �y − w j � we see that
�y, (wi − w j )� = 0 defines the hyperplane halfway between
wi and w j and orthogonal to the vector (wi −w j ) (see Fig. 7).

The scalar product is positive if y is closer to wi than to
w j , and vice versa. Thus, defining a matrix M whose first
row is vector 1 (reflecting the fact that the whole set of points
of W lies in hyperplane �y, 1� = 0) and the remaining rows
are proportional to vectors δi , the rows of the matrix WMT

all have the form (0,±d1, . . . ,±db), with all di > 0, so that
sgnWMT = (0,±1, . . . ,±1). We write

WMT = BD (14)

where D is the diagonal matrix

D = diag(0, d1, . . . , db) (15)

and the information matrix B has rows of the form
(0,±1, . . . ,±1). From (14), we derive the encoding equation
W = BK, where the encoding matrix K has the form

K � DM−T (16)

where the superscript −T denotes inverse transpose (notice
that, since all the entries of the first column of B are zero,
the first row of K can be replaced by any vector.)

We may summarize our design procedure as follows:
① Pick an “initial” vector w1 whose b + 1 real components

sum to zero. Considerations on this choice are provided
in Section VI-A.

② Choose b “root” permutations w2, . . . wb+1 of w1 such
that the b unit-norm vectors δi in (12) are mutually
orthogonal. An algorithm to do this is described in
Section VI-B.

③ Compute the corresponding reflection matrices (13).
These are the generators of a Coxeter matrix group G
isomorphic to a power of Z2.

④ The code W = Gw1 obtained by applying this matrix
group to the initial vector w1 is a group code, whose
codewords are the rows of matrix W = BK.
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IV. DESIGN EXAMPLES

We shall now exhibit a few design examples, while opti-
mization considerations are postponed to next section. One
may notice that we have chosen our operations so that coding
and decoding involve only integer numbers. This is not the
only choice: for example, one may require all quantities
involved in the calculations not to exceed 1 in absolute value.
Some of the line codes presented in this Section (Examples 2,
3, 4, and 6) turn out to be equivalent to those designed
with different techniques as chordal codes in [10]–[12], [25],
where we define two codes to be equivalent if they share
the same initial vector w1 and the same set of performance
parameters {α1, j }b+1

j=2 in (40) below. Specifically, our design
in Example 3 for b = 3 is equivalent to the ENRZ described
in [10]), and that in Example 6 for b = 5 is equivalent to the
CNRZ-5 of [25].

A. Example 1 (b = 2)

Consider the initial vector w1 = (−1, 0, 1) and the
root permutations w2 = (−1, 1, 0) and w3 = (1,−1, 0).
From (12) we obtain δ1 = (0,−1/

√
2, 1/

√
2) and δ2 =

(−2/
√

6, 1/
√

6, 1/
√

6), the generator matrices (9), and hence
codebook (3). With

M =
⎡

⎣

1 1 1
0 −1 1
2 −1 −1

⎤

⎦ (17)

we obtain

WMT =

⎡

⎢

⎢

⎣

0 1 −3
0 −1 −3
0 −1 3
0 1 3

⎤

⎥

⎥

⎦

(18)

which yields sgnWMT = B, where

B =

⎡

⎢

⎢

⎣

0 1 −1
0 −1 −1
0 −1 1
0 1 1

⎤

⎥

⎥

⎦

(19)

With D = diag(0, 1, 3) we also obtain the encoding equation

BK = BDM−T = W (20)

as it should be.

B. Example 2 (b = 3)

With b = 3 and initial vector w1 = (−3,−1, 1, 3),
choose the root permutations w2 = (−3, 3, 1,−1),
w3 = (−1,−3, 3, 1), and w4 = (1,−1,−3, 3). From
these we obtain δ1 = (0,−1/

√
2, 0, 1/

√
2), δ2 =

(−1/2, 1/2,−1/2, 1/2), and δ3 = (−1/
√

2, 0, 1/
√

2, 0), and
hence the following generators of the matrix Coxeter group
isomorphic to Z

3
2:

O1 =

⎡

⎢

⎢

⎣

1 0 0 0
0 0 0 1
0 0 1 0
0 1 0 0

⎤

⎥

⎥

⎦

O2 = 1

2

⎡

⎢

⎢

⎣

1 1 −1 1
1 1 1 −1

−1 1 1 1
1 −1 1 1

⎤

⎥

⎥

⎦

O3 =

⎡

⎢

⎢

⎣

0 0 1 0
0 1 0 0
1 0 0 0
0 0 0 1

⎤

⎥

⎥

⎦

(21)

The codebook is

W =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

w1I
w1O1
w1O2
w1O3
w1O1O2
w1O1O3
w1O2O3
w1O1O2O3

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

−3 −1 1 3
−3 3 1 −1
−1 −3 3 1

1 −1 −3 3
−1 1 3 −3

1 3 −3 −1
3 −3 −1 1
3 1 −1 −3

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(22)

The Peterson transformation matrix (2)

A = 1

2

⎡

⎢

⎢

⎣

1 −1 −1 1
−1 1 −1 1
−1 −1 1 1

1 1 1 1

⎤

⎥

⎥

⎦

(23)

yields the 3-dimensional version of the codebook

AW =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

0 2 4 0
−4 2 0 0

0 −2 4 0
4 2 0 0

−4 −2 0 0
0 2 −4 0
4 −2 0 0
0 −2 −4 0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(24)

With

M =

⎡

⎢

⎢

⎣

1 1 1 1
0 −1 0 1

−1 1 −1 1
−1 0 1 0

⎤

⎥

⎥

⎦

(25)

we have that the rows of WMT are proportional to (0,±4,
±4,±4). Hence, choosing

B = sgnWMT (26)

and taking D = diag(0, 4, 4, 4), we obtain

K = DM−T =

⎡

⎢

⎢

⎣

0 0 0 0
0 −2 0 2

−1 1 −1 1
−2 0 2 0

⎤

⎥

⎥

⎦

(27)

and BK = W, as it should be.

C. Example 3 (b = 3)

Consider again b = 3, and the initial vector w1 = (−3, 1,
1, 1). Since the permutations of this vector would yield a
codebook with only four points, we assume that the central
inversion matrix −I is also an element of the Coxeter group
generating the codebook. This is equivalent to assuming that
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Fig. 8. 3-dimensional representation of the 8 points of codebook of
Example 3.

−w1 is also a codeword. Choosing the root permutations
(−1, 3,−1,−1), (−1,−1, 3,−1), and (−1,−1,−1, 3), we
obtain the following codebook:

W =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

−3 1 1 1
−1 3 −1 −1
−1 −1 3 −1
−1 −1 −1 3

1 1 1 −3
1 1 −3 1
1 −3 1 1
3 −1 −1 −1

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(28)

which can be seen as the union of two PM codebooks, one
generated by the four permutations of (−3, 1, 1, 1) and the
other generated by the 4 permutations of (3,−1,−1,−1).4

Using (23), the projection WA yields a matrix whose rows
are the 8 vectors of the form (±2,±2,±2, 0), corresponding
to a 3-dimensional cube as shown in Fig. 8.

M can be given the form of a 4 × 4 Hadamard matrix:

M =

⎡

⎢

⎢

⎣

1 1 1 1
1 −1 1 −1
1 1 −1 −1
1 −1 −1 1

⎤

⎥

⎥

⎦

(29)

which yields a matrix WMT whose rows have the form
(0,±4,±4,±4), and the encoding matrix may be chosen as
K = M. 5

D. Example 4 (b = 3)

Choose the initial vector w1 = (−1, 0, 0, 1) and the root
permutations (−1, 1, 0, 0), (0, −1, 1, 0), and (0, 0, −1, 1).

4In a different way, it can be seen as a subset of a Variant-II PM [28],
which includes not only the permutations of an initial vector, but also the
sign changes of its components. This subset should include only the balanced
vectors within the Variant-II PM set.

5As pointed out by a reviewer, the detection matrix (25) has fewer nonzero
entries than (29), thus making the former simpler to implement. The tradeoff
between implementation complexity and performance will not be further
commented upon here.

The decoding matrix

M =

⎡

⎢

⎢

⎣

1 1 1 1
0 −1 0 1

−1 1 −1 1
−1 0 1 0

⎤

⎥

⎥

⎦

(30)

yields rows of the matrix WMT with the form (0,±1,
±2,±1). The encoding matrix is K = 1

2 M.

E. Example 5 (b = 4)

Take b = 4, and the initial vector w1 = (−2,−1, 0, 1, 2).
The root permutations (−2, 1, 0,−1, 2), (−1,−2, 1, 0, 2),
(−1, 0, 1, 2,−2), and (0,−1,−2, 1, 2) lead to the decoding
matrix

M =

⎡

⎢

⎢

⎢

⎢

⎣

1 1 1 1 1
0 −1 0 1 0

−1 1 −1 1 0
−1 −1 −1 −1 4
−1 0 1 0 0

⎤

⎥

⎥

⎥

⎥

⎦

(31)

which yields rows of the matrix WMT with the form
(0,±2,±2,±10,±4).

F. Example 6 (b = 5)

With b = 5, choose the initial vector w1 = (1,−1,−3,
−1, 1, 3) and the root permutations w2 = (1, 1, −3, −1,
−1, 3), w3 = (1, 1, −3, −1, 3, −1), w4 = (−1, −1,
1, −3, 1, 3), w5 = (−1,−1,−3, 1, 1, 3), and w6 =
(3,−3,−1, 1,−1, 1). The 32-word codebook can be decoded
using the matrix

M =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

1 1 1 1 1 1
1 −1 0 0 0 0
0 0 0 1 −1 0

−1 −1 −1 1 1 1
1 1 −2 0 0 0
0 0 0 1 1 −2

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(32)

The product WMT yields a matrix all of whose rows have
the form (0,±2,±6,±6,±2,±6). Encoding is done with
K = M.

V. CONSIDERATION OF ERROR PROBABILITIES

After addition of white Gaussian noise samples
∼N (0, N0/2) independent across wires and transmitted
b-tuples, the codebook matrix W + N is received. The
detection process is summarized as the calculation of the
signs of (W + N)MT. The j th symbol of the i th source
b-tuple is erroneously detected if its polarity is altered by
noise, which occurs with probability

(pe)i, j = P

�

n j < −












�

WMT
�

i, j













�

(33)

where n j ∼ N (0, σ 2
j ), and σ 2

j � (N0/2)ξ2
j is the j th element

of the diagonal covariance matrix of the noise term:

E

�

(NMT)T(NMT)
�

= M
�

E(NTN)
�

MT

= N0

2
diag(ξ2

1 , . . . , ξ2
b+1) (34)
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Thus,

(pe)i, j = Q

⎛

⎜

⎜

⎝













�

WMT
�

i, j













√
N0/2 ξ j

⎞

⎟

⎟

⎠

(35)

We define the signal-to-noise ratio η observing that the average
energy associated with the transmission of a signal b-tuple is
given by

E = �W�2

2b
(36)

where �W� denotes the Frobenius norm of matrix W. The
energy per bit is consequently Eb = E/b, and the signal-to-
noise ratio is

η � Eb

N0
= �W�2/2b

bN0
(37)

Thus, we can rewrite (35) in the form

(pe)i, j = Q
�

αi, j
�

2η
�

, i = 1, . . . , 2b, j = 2, . . . , b + 1

(38)

where6

αi, j �

�






WMT







 (MMT)−1/2
�

i, j
��W�2/(b2b)

(39)

Since group codes have the uniform error probability, i.e.,
the error probability is the same for every transmitted code-
word, the values of αi, j do not depend on the value of i .
An alternative expression is

α1, j = √
b

�w1 − w j �
2 · �w1� , j = 2, . . . , b + 1, (40)

where the denominator is the diameter of the sphere enclosing
the codebook vectors.

Using (40), we obtain

b+1
�

j=2

α2
1, j = b (41)

In fact, due to the symmetry of the codebook, if w1 ∈ W
then also −w1 ∈ W . The distance between w1 and −w1 is
equal to the diameter of the hypersphere on whose surface the
codebook points lie, and the vector joining these two points
is the longest diagonal of the corresponding orthotope. The
squared length of this diagonal equals the sum of the squared
lengths of the edges radiating from w1, which proves (41).

Since the Voronoi regions are congruent and bounded by
orthogonal hyperplanes, the ML decisions on the individual
bits are affected by independent noise samples, and hence the

6Observe that the rows of the matrix







WMT







 quantifies the amplitudes

of the eye opening before rectification. Notice that having equal columns of

matrix







WMT







 is not sufficient to have equally protected symbols, as their

noise protection also depends on the values ξ2
2 , . . . , ξ2

(b+1).

following exact expression for the average error probability
holds:

pe = 1 −
b+1
�

j=2

�

1 − Q
�

α1, j
�

2η
��

(42)

We may also observe that (42) is minimized, under the con-
straint (41), by choosing all the α1, j equal, which corresponds
to having the codebook orthotope equal to a hypercube.

From (42) we may derive the union upper bound

pe ≤
b+1
�

j=2

Q
�

α1, j
�

2η
�

(43)

and the asymptotic approximation, valid for large signal-to-
noise ratios,

pe � ν Q
�

αmin
�

2η
�

(44)

where αmin = min j α1, j , and ν is the number of α1, j taking
value αmin.

Table III summarizes the values of the αi, j for some line
codes.

VI. OPTIMIZATION OF THE CODEBOOK

A natural and common optimization criterion, based on
the performance at large values of signal-to-noise ratios,
is the maximization of the minimum Euclidean distance of
the codebook, i.e., of

dmin = min
O

�w1 − Ow1� (45)

where O runs through the matrices representing the Coxeter
group chosen for the codebook design. The choice between
two line codes with the same dmin may be based on the second
smallest Euclidean distance, etc. Since the design criterion
described in Section III generates a codebook which is a subset
of a PM set, the minimum distance of the latter turns out to
be a lower bound on (45).

A. Choosing the Initial Vector

The first constraint on the choice of w1 comes from the
observation that, due to the linearity of the encoder, if w ∈ W
then also −w ∈ W . A sufficient condition for this to occur is
to force −w to be a permutation of w, which is obtained from
an initial vector such that its nonzero components occur in
pairs including positive and negative values. All the examples
in Table III satisfy this condition, with the only exception of
the entry described in Example IV-C.

Further, it seems reasonable to start from an original PM
set having the largest possible minimum distance.7 Using
the notations of [27], the initial vector for the generation of
a PM set has components μ1, . . . , μk , each being different
and repeated m1, . . . , mk times, respectively. It was proved
in [2] that for optimality the μi must be equally spaced
(i.e., μi+1 − μi is a constant). Moreover, if m1, . . . , mk are
given, then the optimum combination of μs and ms consists of

7One should keep in mind that it may occur that the minimum distance of
the line code be larger than that of the original PM set.
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TABLE III

PERFORMANCE OF SOME (b + 1, b) COXETER-GROUP LINE CODES.

pairing the smallest m with the smallest μ, the second smallest
m with the largest μ, the third smallest m with the second
smallest μ, and so forth. Thus, the optimization of a PM
set is complete once the ms are chosen in an optimum way.
Ingemarsson [15], [16] has advocated a choice of the ms which
makes the amplitudes of the initial vector have a sampled
Gaussian distribution (an idea that was used in [27]). However,
the solution of [15] and [16] may not be optimum, as the
search was restricted to initial vectors satisfying a certain
symmetry [19], [20]. A numerical optimization algorithm was
derived by Karlof [17] and Karlof and Chang [18], while tables
of optimum PM sets in low dimensions are exhibited in [9].
For small values of b, a sensible choice consists of checking all
the partitions (m1, m2, . . . , mr ) of the number of components
of w1, as mentioned in Section II, and choosing the partition
yielding the best code.

In our design, for dmin optimization, we examine all the
partitions of (b + 1) in the form b + 1 = m1 + . . . + mk , and
derive for each of them a codebook under the assumption of
equally spaced μi . This is shown in Examples IV-B to IV-D,
where the partitions 4 = 1 + 1 + 1 + 1, 4 = 1 + 2 + 1, and
4 = 3 + 1 were considered. Notice also that some of the par-
titions may not lead to a codebook satisfying our constraints:
for example, the partition 4 = 2 + 2 generates a PM set with

4!/(2!2!) = 6 vectors, which cannot be used to generate a
codebook with 2b = 8 vectors as needed.

B. Choosing the Root Permutations

Once w1 has been chosen, the Coxeter matrix group has to
be generated, which is obtained, as described in Section III,
by taking b additional permutations wi , i = 2, . . . , b + 1, (the
root permutations) such that the b difference vectors (w1−wi )
are mutually orthogonal. These vectors correspond to the b
edges of a b-dimensional orthotope having w1 as a vertex.
We observe first that in some cases such permutations may
not exist. For example, the initial vector w1 = (−1, 0, 0, 0, 1)
originates a PM set with 20 vectors, from which 4 orthogonal
difference vectors cannot be found. In other cases, more
than one choice of root permutations is available, as shown
graphically in Fig. 9 for the simple case b = 2. From this
figure it is seen that the two choices are equivalent, as they
give rise to congruent orthotopes, but this may not be the case
for b > 2.

In other cases the different choices of root permutations
yield codebooks with different performance, as revealed by the
Euclidean distances from w1 to the other root permutations.
A simple algorithm listing all the choices of root permutations



BIGLIERI AND VITERBO: LINE CODES GENERATED BY FINITE COXETER GROUPS 1945

Fig. 9. Two possible choices of root permutations leading to equivalent
codebooks with b = 2.

and their quality consists of the following. Consider the graph
whose vertices are the differences between w1 and all its per-
mutations, x‘and whose edges join the vertices corresponding
to orthogonal differences. Any complete subgraph where each
vertex is adjacent to every other (called a clique) yields a set
of mutually orthogonal differences. The maximum number of
vertices in such a clique is b, and the clique is called maximal.
Thus, the choice of a set of root permutations is tantamount
to the choice of a maximal clique with the largest minimum
norm of the orthogonal differences in it (as mentioned before,
if two cliques have the same minimum norm, we choose
the one whose second smallest distance is the largest, etc.).
To generate the graph, form the matrix � whose rows are the
differences between w1 and all its permutations. The Gram
matrix ��T has a zero in all entries corresponding to a pair
of orthogonal differences. Replacing the zero entries in ��T

with 1’s and the nonzero entries with 0’s yields the incidence
matrix of the graph sought. Algorithms (see [6]) are available
to list the maximal cliques.

For example, the initial vector w1 = (1,−1,−3,−1, 1, 3)
of Example IV-F has 180 permutations and 24 maximal
cliques. The best clique under our criterion yields the values
of α1, j listed in the last entry of Table III. A related line
code, using the same w1 and exhibited in [26, Table 2], yields
a slightly inferior performance (the values of α1, j are 0.67,
0.67, 0.67, 0.95, and 1.65).

C. Removing the PM and Integer-Number Constraint

The designs done in the previous sections were based on
the constraint of a codebook being a subset of a PM set,
as this choice reduces the cardinality of the set of the signal
amplitudes in each wire. This is a convenient choice, because
a limited number of amplitudes implies a limited number of
current or voltage sources needed to implement the encoder.
In addition, one can deal only with integer amplitudes, thus
increasing the accuracy of the implementation as rounding
becomes unnecessary. The downside of this choice is that the
vertices of the codebook orthotope are constrained to a subset
of those of the polytope of the original PM set (a semireg-
ular polytope, see [27]). If this constraint is removed, after
a Coxeter matrix group is generated, one may choose the
optimum initial vector as indicated in [20], that is, being at

Fig. 10. Comparison of the line codes with b = 2 obtained from the same
matrix Coxeter group, as applied to w1 (see the entry with b = 2 in Table III)
and to w1,opt .

the same distance from every plane bounding the fundamental
region of the Coxeter group in which w1 lies. 8 In general,
we have

w1,opt =
� w1 − wi

�w1 − wi� (46)

where the sum runs through the set of root permutations. The
resulting codebook has the shape of a hypercube, which yields
α1, j = 1 for j = 2, . . . , b + 1. Fig. 10 shows a geometric
representation of the codebook obtained with the choice of
the optimum initial vector.

For suboptimum design, one may use an integer-value
approximation of the optimum initial vector, which could lead
to a codebook shape close to a hypercube, possibly at the price
of a larger number of values of the codeword components. For
illustration, consider b = 3 and the first set of root permuta-
tions of Table III. The matrix representation of the Coxeter
group in this case yields the optimum initial vector w1,opt =
(−1/2 −√

2/2, 1/2 −√
2/2,−1/2 +√

2/2, 1/2 +√
2/2), and

a codebook W whose rows are permutations of w1,opt. Using
the suboptimum initial vector (−6,−1, 1, 6) ≈ 5×w1,opt, one
obtains α1, j ≈ 1.

VII. MISCELLANEOUS REMARKS

➀ In [20] and [23], group codes generated by Coxeter
groups were studied. The constraint of having Voronoi
regions bounded by orthogonal hyperplanes, and hence
allowing an exceedingly simple ML detection, was not
considered. The designs in [20] were optimized by choos-
ing an initial vector in the center of a fundamental region
of the Coxeter group.

➁ A topic related to the codebooks examined in this paper
is the study of constant-weight codes. These satisfy the
equal-energy condition, while their words may not be
balanced in the sense of this paper. See [22], [29], and
the references therein.

➂ Introduction of error-control capabilities can be obtained
by suitably decreasing the wire efficiency and using
standard linear codes, as advocated in [12].

8We recall that the fundamental region of a matrix group is a connected
region of the space such that no point in its interior can be obtained as Ow1,
where O is any matrix of the group. For a precise definition see [20].
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➃ It should be noticed that the subset of permutations
leading to a line code constructed using a Coxeter group
does not necessarily form a subgroup of matrices of the
natural representation of the symmetric group. In fact,
although the generating matrices of a representation of
the Coxeter group, as applied to w1, yield permuta-
tions of that vector, these may not be all permutation
matrices. As an example, the “square” code of Fig. 10,
generated by the optimum w1 approximately equal to
(−0.8,−0.3, 1.1), yields the codebook

W =

⎡

⎢

⎢

⎣

−0.8 −0.3 1.1
−0.8 1.1 −0.3

0.8 −1.1 0.3
0.8 0.3 −1.1

⎤

⎥

⎥

⎦

(47)

As another example, with the design of last entry
in Table III the optimum initial vector can be found
to be (1,−1,−√

3,−1, 1,
√

3) yields a codebook whose
words have again an increased alphabet size and are not
permutations of the initial vector.

VIII. CONCLUSIONS

Expanding on the work described in [1], [10], [12], and [26],
we have developed an algebraic method for generating line
codes for parallel transmission that have many of the properties
of differential signaling. These are group codes generated
by a matrix representation of a Coxeter group. Performance
evaluation is also discussed, and a number of design examples
are exhibited (some of which are new, or improve upon known
codes), along with some consideration of optimum codes.
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