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Abstract:

Large-scale exotic pine plantations have been developed for timber production in subtropical Australia. Few studies investigate
the spatial variability of both throughfall and stemflow in such managed pine plantations despite their acknowledged effects on
the heterogeneity of hydrological and biochemical processes of forested ecosystems. To examine the spatial variability of rainfall
under a 12-year-old pine plantation in a subtropical coastal area of Australia, we observed gross rainfall, throughfall and
stemflow over a 1-year period. Our results show that the spatial variability of gross rainfall within a 50m� 50m plot is minimal.
Throughfall is significantly different among three tree zones (midway between rows, west and east side of trunks), particularly
for rainfall <50mm, with the highest throughfall on the east side of the tree trunks (sum=85% of gross rainfall) and the lowest
in the midway between tree rows (sum= 68% of gross rainfall). These spatial patterns persist among 84% of recorded rainfall
events. Spatial variability and time stability of throughfall are better explained by canopy interception of the inclined rainfall
resulting from the prevailing easterly wind direction throughout the experiment. The annual stemflow is different among
individual sample trees, which is mainly ascribed to the difference in tree size (e.g. projected canopy area and stem diameter).
The outcomes of this study would help future investigators better design appropriate sampling strategies in these pine plantations
under similar climate conditions. Copyright © 2014 John Wiley & Sons, Ltd.
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INTRODUCTION

Partitioning of gross rainfall (P) into throughfall (TF),
stemflow (SF) and interception loss (I) by forest canopies
exerts a significant role in the water budget of forest
ecosystems (Llorens and Domingo, 2007). The presence
of trees affects the volume and also the spatial distribution
of net rainfall reaching the forest floor via throughfall and
stemflow. The variable throughfall and stemflow fluxes
and related solute inputs are of great importance, because
they can produce ‘hot spots’ and ‘hot moments’ of
hydrological and biogeochemical processes within soils
(McClain et al., 2003), e.g. water availability for plants
(Ford and Deans, 1978; Bouillet et al., 2002; O’Grady
et al., 2005), nutrient concentration and cycling (Whelan
et al., 1998; Laclau et al., 2003; Zimmermann et al.,
2007) and localized groundwater recharge (Taniguchi
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et al., 1996; Liang et al., 2009; Guswa and Spence,
2012). Additionally, the spatial patterns of throughfall
and stemflow will determine the accuracy of estimates on
stand-scale interception losses (Loustau et al., 1992;
Shinohara et al., 2010). Consequently, the spatial
variability of throughfall and stemflow is potentially a
significant control on forest hydrology and biogeochem-
istry (Hopp and McDonnell, 2011; Levia et al., 2011;
Coenders-Gerrits et al., 2013).
Field investigations have exhibited considerable

variability in throughfall over diverse forest types
globally (e.g. Llorens and Domingo, 2007; Krämer and
Hölscher, 2009; Wullaert et al., 2009; Mululo Sato et al.,
2011). Stemflow has demonstrated even higher variability
than throughfall (e.g. Lloyd and Marques, 1988; Loustau
et al., 1992; Levia et al., 2010). The variability of
throughfall and stemflow is influenced by a number of
factors, including canopy structure and architecture (e.g.
Crockford and Richardson, 2000, Loescher et al., 2002;
Deguchi et al., 2006; Ziegler et al., 2009), rainfall
intensity and duration (e.g. Huber and Iroumé, 2001;
Carlyle-Moses et al., 2004; Zhan et al., 2007), wind
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direction and speed (e.g. Herwitz and Slye, 1995; Šraj
et al., 2008; Van Stan et al., 2011).
Apart from throughfall and stemflow, open-field gross

rainfall is also characterized by high spatial variability
from sub-kilometre scale to large catchment scale (Syed
et al., 2003; Ciach and Krajewski, 2006; Villarini et al.,
2008; Fiener and Auerswald, 2009). For example,
McConkey et al. (1990) studied the spatial variability
of gross rainfall using ten tipping-bucket rain gauges
spaced between 800 and 4000m apart and suggested
that gross rainfall must be observed within a few
hundred metres of the study site to obtain reliable gross
rainfall. Krajewski et al. (2003) analysed the small-
scale (<5 km2) gross rainfall variability in different
climatic regimes and identified large variability at the
small distances. However, the spatial patterns of gross
rainfall at finer scales (sub-hundred-metre scale) at
which most throughfall experiments were performed
have seldom been examined.
In subtropical Australia, as in many other regions and

countries, exotic pine plantations have been largely
developed for timber production in recent decades
(Kanowski et al., 2005). To optimize the management
of these plantations in terms of soil water and nutrition
availability, a better understanding of the spatial distri-
bution of rainfall within forests and its controls is
required. Although researchers have investigated the
throughfall and stemflow in areas of pines (e.g. Valente
et al., 1997; Shachnovich et al., 2008; Molina and Del
Campo, 2012), few studies have focused on the spatial
variability in both throughfall and stemflow, as well as
their drivers in managed pine plantations. Particularly, the
spatial variability of throughfall and stemflow in pine
forests planted under subtropical coastal conditions
characterized by hot humid summers with frequent
intense thunderstorms and mild dry winters have hitherto
not been reported.
Figure 1. (a) Locations of two gross rainfall gauges (G1 and G2) on the track
measurements was represented by the square. (b) Locations of the 15 throug
edge of projected crown area (E1–E5), tree trunk to west edge of projected cro

(M1–M5) and eight stemflow gauges (S1–S8)

Copyright © 2014 John Wiley & Sons, Ltd.
Here, we examine the heterogeneity of gross rainfall,
throughfall and stemflow, as well as the resulting
interception loss in a typical pine plantation of subtropical
Australia. Specific objectives of this study are to (1) identify
the patterns and magnitudes of variability in gross rainfall,
throughfall and stemflow, (2) explore the main driving
factors for spatial variability of throughfall and stemflow
and (3) determine the proportions of throughfall, stemflow
and interception loss in this plantation.
MATERIALS AND METHODS

Site description

The present study was conducted on Bribie Island at
an elevation of 9.0m above sea level (26°59′04″S,
153°08′18″E), located in southeast Queensland, Australia.
This area has a humid subtropical climate (Köppen
climate classification Cfa) with a hot wet summer and a
mild dry winter. According to the rainfall data from the
Australian Bureau of Meteorology, the average annual
rainfall over the last 30 years is 1405mm, with 1082mm
(77.0% of annual rainfall) occurring during the wet season
(November–April). The coldest and warmest months are
July and January, with average monthly temperatures of
16.2 and 26.7 °C, respectively. A representative study plot
(50m� 50m) was established in a pine stand surrounded
by similar stands, extending 0.8, 1.2, 2.1 and 4.3 km to the
west, east, north and south, respectively. The plot was
established at least 15m (15–20m) away from the tracks to
the south and the west tominimize the edge effect (Figure 1
(a)). The 12-year-old pine hybrid of Pinus elliottii
Engelm.�Pinus caribaea Morelet var. hondurensis
(second rotation) was planted in rows (roughly 5.0m
between tree rows and 2.5m between the trees in a row). The
pine trees reached an average height of 13.3m, and the tree
and in the nearby clearing. The 50m� 50m study plot used for throughfall
hfall gauges deployed at three tree zones (E, W and M): tree trunk to east
wn area (W1–W5) and pathway in between edges of projected crown area
. The dots represent locations of pine trees
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crowns were slightly overlapping above the rows (5–10%),
leaving a gap area of ~1.5m width between rows. The stem
density was 840 trees ha�1 and stand basal area was
23.6m2 ha�1. The soils in the study area are classified asfine
to medium sands based on US Department of Agriculture
(USDA) soil classification system.

Measurement of stand characteristics

The forest canopy height was measured from the
ground to the top of the tree canopy using a clinometer
and a tape measure. The crown radius was determined as
the horizontal distance from the tree trunk to the
projected edge of the crown along four main compass
directions (N, S, W and E). The stem diameter at breast
height (DBH) (1.3 m above ground surface) was
obtained using a diameter calipre. The number of trees
and stem diameter were surveyed within the experimen-
tal plot to obtain stem density and stand basal area. The
canopy gap fraction (p) and leaf area index (LAI) were
seasonally measured 1.0m above each rain gauge in the
late evening using a LAI-2000 plant canopy analyser
(LI-COR, Lincoln, USA). The p and LAI above each
throughfall gauge was determined for the circle with a
radius of ~1.3m at the canopy height, equivalent to a
zenith angle of 7°. The p was calculated as the ratio of
below-canopy and above-canopy readings, and the
canopy cover (c) was then determined as 1-p. The
LAI-2000 plant canopy analyser tends to underestimate
LAI for conifers because of the clumping effects (Gower
and Norman, 1991). The estimated LAI values were thus
corrected by a factor of 1.11, on the basis of the
measurements in a pine stand of same species in
southeast Queensland by Baynes and Dunn (1997).
The canopy storage capacity (S) above each throughfall
gauge was estimated by the method of Leyton et al.
(1967), as the negative intercept of linear regression
between gross rainfall and throughfall for rainfall events
that were sufficient to saturate the canopy.

Meteorological variables

An automatic weather station was set up in the centre
of the study plot to measure temperature and relative
humidity (HMP155 sensor, Vaisala, Finland), wind speed
and direction (Model 03002 wind sentry set, RM Young,
USA), solar radiation (CNR4 net radiometer, Kipp &
Zonen, the Netherlands) and soil heat flux (HFP01 soil
heat flux plates, Hukseflux, the Netherlands). The weather
station was mounted on a 15-m-high mast, which was
~1.5m above the tree canopy. These meteorological
variables were continuously measured at 5-min intervals
and automatically recorded to a datalogger (CR3000,
Campbell Scientific, USA) at 15-min intervals. Gross
rainfall was measured using two HOBO tipping-bucket
Copyright © 2014 John Wiley & Sons, Ltd.
rain gauges with a 177 cm2 orifice (RG3-M, Onset
Computer Corp., USA), one in the middle of a ~30m
wide track next to the study plot, and the other in the
centre of a nearby clearing at a distance of ~400m
(Figure 1(a)). The bucket tipping time (0.5 s resolution)
and numbers were automatically recorded by a self-
constructed datalogger.

Experimental design

To investigate the spatial variability of gross rainfall
and quantify potential instrumental errors in rain gauge
records, 16 tipping-bucket rain gauges were deployed
within a 50m� 50m plot in the nearby clearing from
5 December 2011 to 14 March 2012 before the
throughfall and stemflow measurements. These rain
gauges were set up in a lattice-like arrangement at
16m� 16m spacing. All the tipping-bucket rain gauges
used in this study were placed 50 cm above the ground
to avoid droplet splash effects, and the screen covers on
rain gauges were cleaned and maintained every one or
twomonths to prevent from clogging by leaves and
other debris. These rain gauges were calibrated to
0.2mm per tip in the lab, and dynamically recalibrated
in the field seasonally to ensure the accuracy of the rain
gauges (Calder and Kidd, 1978).
Throughfall and stemflow were simultaneously mea-

sured from 20 March 2012 to 23 March 2013.
Throughfall was sampled using 15 rain gauges identical
to those used for gross rainfall measurements. To quantify
the impact of tree rows on the spatial variability of
throughfall, rain gauges were distributed over three tree
zones (Figure 1(b)). Within each zone, five rain gauges
were placed at a fixed position throughout the experiment
period to evaluate the effects of rainfall characteristics on
spatial variability of throughfall. Ten rain gauges were
positioned ~0.75m from the tree trunk on east and west
sides of the trunks, and the other five rain gauges were
located in the midway between tree rows.
Stemflow was collected on eight trees using spiral-type

stemflow collectors made of wired rubber hose with
2.5 cm in diameter (Toba and Ohta, 2005). Each collector
channel was wrapped at least one and a half loops around
the tree stem, and the collected stemflow was diverted to a
HOBO tipping-bucket rain gauge. The upscaled equiva-
lent stand-scale stemflow depth was obtained following
Hanchi and Rapp (1997):

SF ¼ ∑
n

i¼1

Si�mi

A�104 (1)

where SF is the stand-scale stemflow depth (mm) for the
study area of A (m2), n is the number of DBH classes and
Si and mi are the average stemflow volume (ml) and the
number of trees in the DBH class, respectively.
Hydrol. Process. 29, 793–804 (2015)
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Determination of rainfall inclination angle

The rainfall inclination angle (α, in degree from the
vertical) was computed following a series of empirical
equations (Herwitz and Slye, 1995):

D ¼ 2:23 0:03937ið Þ0:102 (2)

ur ¼ 3:378 lnDþ 4:213 (3)

tanα ¼ u=ur (4)

where D is the median raindrop diameter (mm); i is the
rainfall intensity (mmh�1); ur is the terminal fall velocity
of raindrops (m s�1) and u is the wind velocity (m s�1).
The rainfall inclination angle was calculated at 15-min
intervals, and the average inclination angle for each rainfall
event was computed as the mean of all 15-min values.

Time stability of spatial variability of throughfall

To evaluate the time stability of throughfall patterns,
throughfall collected by each throughfall gauge during
all rainfall events was normalized using Equation (5)
(Keim et al., 2005):

eT ¼ Ti � T

SD
(5)

where eT is the normalized throughfall, Ti is the
throughfall at a sampling point, T is the mean throughfall
for all sampling points and SD is the standard deviation
of throughfall for all sampling points.
Data analysis

Data analyses were carried out using statistical software
SPSS (version 16.0, SPSS Inc., USA). The Kolmogorov–
Smirnov statistic was used to test the normality of mean
throughfall distribution (Molina and Del Campo, 2012).
Differences in total throughfall among three tree zones
were tested by nonparametric tests (Kruskal–Wallis test)
because the (transformed) throughfall data were deviated
Table I. Throughfall measured at three tree zones for different rainfal
followed by the same letter are not

Rainfall
classes (mm)

Frequency
(%)

Gross
rainfall (mm) West side o

<5 46.9 118.0 67.6 ± 1
5–10 20.4 165.8 117.6 ± 1
10–20 13.3 202.2 158.1 ± 5
20–50 13.3 440.6 363.5 ± 2
>50 6.2 652.8 560.7 ± 9
All 100.0 1579.4 1267.5 ± 1

Copyright © 2014 John Wiley & Sons, Ltd.
significantly (p< 0.05) from normal distribution. The
spatial variability of gross rainfall, throughfall and
stemflow was indicated by the coefficient of variation
(CV). The relationships between throughfall, stemflow,
canopy structure and climate variables were studied by
correlation analysis.
RESULTS

Rainfall characteristics

A rainfall event was defined as a rainfall period from
preceding and succeeding rainfall being separated by at
least 6 h to entirely dry the wet canopy (Murakami, 2006).
A total of 107 rainfall events were thus identified and
analysed. The annual gross rainfall amounted to
1579mm, which was higher than the long-term mean
annual rainfall of 1405mm. Specifically, the observed
wet-season rainfall of 1250mm was 171mm greater than
usual, whereas the dry-season rainfall of 321 mm
remained similar to the usual mean of 326mm. On the
basis of the rainfall amounts, the gross rainfall was
divided into five classes: <5, 5–10, 10–20, 20–50 and
>50mm (Table I). Most rainfall events were less than
20mm (80.6% of total events). Small rainfall events
(<5mm) occurred frequently (46.9% of total events), but
their contribution to the annual rainfall was less than
8.0%. Although only seven heavy storms (>50mm) were
recorded, they accounted for 41.4% of the annual rainfall.
The average rainfall intensity during each rainfall event
varied from 1.6 to 11.4mmh�1, with the maximum
intensity of 58mmh�1. Eighty-six percent of rainfall
events were accompanied by easterly winds (38% NE and
48% SE) and the rest by NW and SW winds (Figure 2).
The average wind speed observed during rainfall mainly
ranged from 1.5 to 4.0 m s�1, with minimum and
maximum wind speeds reaching 0.5 and 11.8m s�1,
respectively. The rainfall inclination angle varied from
5° to 47° but was dominantly between 10° and 30°,
accounting for 78.6% of all sampled events (Figure 3).
l classes (mean ± standard error). Within each rainfall class, values
significantly different (p< 0.05)

Throughfall (mm)

f trunk East side of trunk Midway between tree rows

.6 a 75.6 ± 1.8 b 50.2 ± 2.2 c

.2 a 129.2 ± 4.5 b 94.8 ± 2.8 c

.7 a 168.0 ± 1.8 b 130.2 ± 6.5 c

.6 a 397.4 ± 5.7 b 314.1 ± 9.4 c

.5 a 576.2 ± 16.2 a 483.9 ± 18.4 b
4.9 a 1346.4 ± 24.3 b 1073.3 ± 37.6 c

Hydrol. Process. 29, 793–804 (2015)
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Small-scale variability of gross rainfall

The collected gross rainfall by 16 rain gauges showed a
small variability from each other especially for rainfall
events >5mm, and the CVg remained almost constant at
3.5% for these rainfall events (Figure 4). The average
standard error of mean gross rainfall was estimated at
2.1%, ranging from 3.7% to 1.2% in case of 1 and
170mm rainfall events, respectively. It was thus assumed
that gross rainfall was uniformly distributed over the
small-scale plot (50m� 50m), but the resulting CVg was
incorporated into the analysis of spatial variability of
throughfall afterwards.

Variability of throughfall

A strong and positive linear correlation was revealed
between throughfall and gross rainfall (TF=0.802P-1.023,
Copyright © 2014 John Wiley & Sons, Ltd.
R2=0.996, n=107, Figure 5(a)). Annual throughfall was
1231mm, representing 77.9% of the annual gross rainfall of
1579mm. The relative throughfall (TFr, expressed as
percentage of gross rainfall) ranged from 21% to 85%,
averaged 64% and tended to quasi-constant 81% as gross
rainfall increased (Figure 5(b)). The coefficient of variation
of throughfall (CVt) coupled with CVg was greatly affected
by the rainfall amount when gross rainfall was below
10mm, and it was larger among these small rainfall events
(mean = 40%, range = 13�66%). However, the CVt de-
creased down to 20% for gross rainfall of 20mm and
remained at ~16.5% for greater rainfall events.
On the basis of the nonparametric tests, significant

differences in throughfall among different tree zones were
revealed for 93 of 107 rainfall events (p< 0.05). The
throughfall in the midway between tree rows was the
lowest and throughfall on east side of tree trunks was
the highest, but this difference was not statistically
significant for heavy rainfall events (>50mm), especially
for throughfall gauges close to tree trunks (Table I). The
confidence intervals of estimated throughfall varied from
±6% to ±17% of the mean throughfall, with 89 out of 107
being less than 10% of the estimates, and the confidence
interval of the estimated annual throughfall was ±7% of
mean annual throughfall.
Throughfall patterns indicated that the distribution of

throughfall was heterogeneous, but the spatial patterns
appeared to be stable among rainfall events (Table I),
which was further confirmed by the time stability of the
spatial variability of throughfall (Figure 6). Persistence of
higher and lower throughfall was detected close to tree
trunks and in the midway between tree rows, respectively.
More rainfall was collected on east side of tree trunks
than on west side. However, rain gauges in the midway
Hydrol. Process. 29, 793–804 (2015)
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showed slightly lower variability of normalized
throughfall than gauges close to tree trunks, indicated
by error bars.
The estimated canopy storage capacity above the 15

throughfall gauges based on the relationship between
throughfall and gross rainfall, ranged between 0.61mm
and 1.67mm during the study period, with a mean of
1.12mm. The measured canopy cover within a zenith
angle of 7° above the 15 throughfall gauges was on
average 57%, ranging from 23% to 91%. The corre-
sponding LAI ranged from 1.22m2m�2 to 2.56m2m�2,
with a plot-average of 1.97m2m�2. A negative exponen-
tial correlation was revealed between relative throughfall
and canopy storage capacity (TFr = 115.313e

�0.283S,
R2= 0.761, n = 15, Figure 7(a)). However, positive power
correlations were found between relative throughfall and
LAI (TFr= 68.596LAI

0.332, R2=0.679, n= 15, Figure 7(b))
and canopy cover (TFr=94.234c

0.178, R2=0.801, n=107,
Figure 7(c)).
Copyright © 2014 John Wiley & Sons, Ltd.
The wind direction was found to significantly influence
the distribution of throughfall within different tree zones
(Figure 8). The highest throughfall occurred on the
windward side of tree trunks. However, throughfall
gauges in between tree rows received lowest throughfall
under both easterly and westerly wind conditions. No
correlation was found for maximum rainfall intensity,
but a negative relationship was revealed between the
variability of throughfall and the average rainfall
intensity (Figure 9). Generally, the coefficient of variation
of throughfall tended to decline with the increase in
rainfall intensity.

Variability of stemflow

Average annual stand-scale stemflow was 15mm,
accounting for only 1.0% of the annual gross rainfall.
Stemflow was well correlated to gross rainfall and
increased with increasing gross rainfall (Figure 10(a)).
The stemflow was small for rainfall less than 30mm. For
rainfall larger than 50mm, the stemflow varied from 1.0%
to 1.3% of gross rainfall (Figure 10(b)). The coefficient of
variation of stemflow (CVs) among trees greatly depended
upon the gross rainfall (Figure 4). The average CVs was
0.46 for rainfall below 5mm. As observed for throughfall,
the CVs tended to decline asymptotically to 18% as gross
rainfall increased, but the CVs was higher than CVt. The
higher variability of stemflow caused much larger
confidence intervals of estimated stemflow than
throughfall (12�49% of mean stemflow).
The total stemflow volumes (TSV) differed among

individual sample trees (Table II). The TSV received by the
largest sample tree (tree 6) was 2.5 times larger than that
sampled by the smallest sample tree (tree 1). Generally,
positive relationships were obtained between stemflow
volume per millimetre of rain (SVR) and projected crown
area (PCA) (SVR=0.0202 PCA-0.0003, R2= 0.77, n= 8)
and DBH (SVR= 0.0194 DBH-0.2137, R2= 0.67, n = 8).
Hydrol. Process. 29, 793–804 (2015)
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Figure 7. Relationships between relative throughfall (TFr, as percentage of gross rainfall) and (a) canopy storage capacity (S), (b) leaf area index (LAI)
and (c) canopy cover (c)

Distance to tree trunk (m)

R
el

at
iv

e 
th

ro
u

g
h

fa
ll 

(%
)

West East

Crown and trunk

Prevailing wind direction

0

20

40

60

80

100

120

(a)
−3 −2 −1 0 1 2 3 −3 −2 −1 0 1 2 3

Distance to tree trunk (m)

R
el

at
iv

e 
th

ro
u

g
h

fa
ll 

(%
)

West East

Crown and trunk

Prevailing wind direction

0

20

40

60

80

100

120

(b)

Figure 8. Distribution of mean relative throughfall (± standard deviation) within three tree zones: (a) during easterly wind-driven rainfall events (n= 89)
and (b) during westerly rainfall events (n= 18)
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Derived rainfall interception loss
Interception loss was estimated by the difference between

the measured gross rainfall and net rainfall (throughfall plus
stand-scale stemflow). The derived annual interception loss
was 333mm, representing 21.1% of gross rainfall. The
interception loss increased as gross rainfall increased, but
Copyright © 2014 John Wiley & Sons, Ltd.
relative interception loss declined with increasing gross
rainfall. Relative interception loss was large (average=64%,
range=23�81%) for rainfall below 5mm, around 30% for
rainfall of 10mm and was nearly stable (~20%) for heavier
rain events (>30mm). The total interception loss for rainfall
below 5mm only occupied 13% of the annual interception
Hydrol. Process. 29, 793–804 (2015)
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Table II. Tree size characteristics, total stemflow volume (TSV)
and stemflow volume per mm of rain (SVR). PCA and DBH

represent projected crown area and stem diameter at breast height,
respectively

Tree
number

Canopy
height (m)

PCA
(m2)

DBH
(cm)

TSV
(l)

SVR
(lmm–1)

1 11.5 5.7 15.3 173 0.11
2 12.1 4.5 17.4 186 0.12
3 12.7 9.6 21.4 234 0.15
4 13.5 8.6 21.2 276 0.17
5 12.4 5.7 16.5 135 0.09
6 14.1 11.3 22.3 431 0.27
7 13.4 10.8 20.3 334 0.21
8 13.8 7.1 19.6 258 0.16
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loss, whereas that for rainfall >30mm accounted for 34% of
the annual interception. The confidence intervals of intercep-
tion losswere averaged at ±31%of themean interception loss.
DISCUSSION

Spatial variability of gross rainfall

The assumption of uniform distribution of gross rainfall
within the experimental plot is usually applied when
investigating the spatial variability of throughfall. The low
coefficient of variation (3.5%) and average standard error
(2.1%) of gross rainfall in the present study indicated that
this assumption could be valid over a small study plot
(50m� 50m) in subtropical coastal areas. Particularly, the
variability of gross rainfall measured at this small scale can
be most likely subject to the stochastic errors from tipping-
bucket rain gauges (Krajewski et al., 2003). Therefore, the
variability of variation resulted from these instrumental
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errors needs to be considered when analysing the spatial
variability of throughfall.

Spatial variability of throughfall

The minimum number of throughfall gauges (Nmin)
required to estimate throughfall within a preset percentage
of mean (E) at 95% confidence interval can be estimated
from CVt following Kimmins (1973):

Nmin ¼ zc2 � CVt
2

E2 (6)

where zc is the critical value of the 95% confidence level
(approximately 2.0).
To estimate the throughfall within 10% of mean at the

95% confidence interval on the basis of CVt, the required
number of throughfall gauges would be on average 17
(range = 4�66) for gross rainfall events >3mm. For gross
rainfall events <3mm, much more throughfall gauges
would be required (average = 67, range = 15�173). The
15 throughfall gauges used in the present study were
sufficient to estimate the mean throughfall within the
acceptable error limit of 10% for gross rainfall events
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>3mm (mean = ±9%) and for the total throughfall over
the study period (±7%).
Stationary collectors were found to typically produce

higher CVt than roving collectors (Holwerda et al., 2006;
Levia and Frost, 2006). More collectors are thus required
to obtain reliable estimates on plot-average throughfall.
To minimize the number of gauges for throughfall
estimates with high confidence level and low error,
periodically relocating the collectors has been adopted
(Ritter and Regalado, 2012). In difficult-to-access areas,
collecting troughs with larger sampling area are
recommended (Ziegler et al., 2009; Mair and Fares,
2010). However, fixed gauges have to be used, as we did
in this study, when focusing on the spatial distribution of
throughfall and determining their drivers. Although the
layout of throughfall gauges appeared to produce accep-
table throughfall estimate in our study, the uncertainty in
estimation of stand-scale throughfall resulted from the
specific placement of gauges has to be acknowledged. The
throughfall gauges were fixed in the centre of each tree
zone throughout the experiments, which could leave the
other locations poorly sampled and thus cause sampling
errors on stand-scale throughfall estimation.
The quasi-constant CVt of ~16.5% appeared lower than

generally reported values in non-subtropical pine forests.
Gash and Stewart (1977) reported that the variability of
throughfall in a Scots pine plantation was around 22%
based on 24 roving gauges. Using 40 rain gauges, Zhan
et al. (2007) found CVt remained at 18% in a Chinese
pine plantation. Similarly, Loustau et al. (1992) found the
CVt to be around 19% in a maritime pine stand using 52
fixed gauges. However, the present result was higher than
the findings by Llorens et al. (1997) in a Mediterranean
mountainous Pinus sylvestris forest, where a lower steady
CVt of 6% was revealed. In the aforementioned studies,
number and type of rain gauges, forest and rainfall
characteristics were different from this study. The lower
canopy cover and higher canopy openness in this studied
young pine plantation may reduce potential drip points
and hence produced less spatial variability in throughfall
(Carlyle-Moses et al., 2004). Besides, the lower variabil-
ity of throughfall may be ascribed to relative high rainfall
intensity from summer storms in the humid subtropical
areas where the canopy was saturated in a short time
(Zhan et al., 2007). Finally, the lower variability of
throughfall could be caused by the limited sampling
points of throughfall, as discussed earlier.
Time stability analyses confirmed the persistence of

higher relative throughfall close to the pine trees and
lower relative throughfall in the midway between tree
rows among rainfall events. In contrast, Whelan et al.
(1998) found less throughfall close to the spruce trunks,
whereas Loustau et al. (1992) found that the throughfall
in between pine trees was the highest for light rainfall but
Copyright © 2014 John Wiley & Sons, Ltd.
the lowest for heavy rainfall events. Keim et al. (2005)
reported higher throughfall close to tree trunks in young
coniferous forests, but lower throughfall occurred close to
trunks in old stands of conifers, which was attributed to
the difference in tree structure.
The average S of 1.12mm determined with the

regression method compared favourably with observed
values in coniferous forests, ranging from 0.3mm to
3.0mm (Llorens and Gallart, 2007). However, the
negative relationship between S and LAI indicates that
estimated S values for the canopy above the individual
throughfall collectors were modified by the winds. In
general, relative throughfall decreases with the increase in
LAI and canopy cover (Molina and Del Campo, 2012).
However, our results revealed the opposite tendency,
which indicates that the meteorological variables had a
greater effect on the spatial viability of throughfall than
did the canopy structure.
Intense and wind-driven rainfall events occur frequently

in subtropical coastal areas. As reported by earlier studies,
the variability of throughfall decreases with increasing
rainfall intensity. As we found in this study, the windward
canopy intercepted more rainfall than the leeward canopy
and throughfall in between trees was the lowest at all times
(Figure 8), which can be largely explained by the rain
shadow effects. This further supports our conclusion that
spatial distribution of throughfall is mainly controlled by
meteorological conditions. Wind-driven rainfall is always
inclined from a vertical pathway (Ford and Deans, 1978;
Herwitz and Slye, 1995). The tree crowns probably create
lateral rain shadowing effects on the leeward side and
midway areas between tree rows. Only part of the inclined
rainfall passes directly through small gaps in the canopy
and falls in the shadowed midway areas as free
throughfall, but the intercepted rainfall will drip down
under canopy as released throughfall or evaporate to the
atmosphere as interception loss. The dominant wind
during the study period blew from east to west (86%),
which caused slightly higher throughfall on the east side
of tree canopy.

Spatial variability of stemflow

Stand-scale stemflow accounted for only a small
percentage (1.0%) of gross rainfall, which was similar
to the quantified values by other authors, e.g. 1.3% by
Llorens et al. (1997), 1.4% by Shachnovich et al. (2008)
and 0.88% by Shi et al. (2010). The low stemflow
fraction was expected because of the low stem density
and rough bark in our pine forests. Compared with
throughfall, the stand-scale stemflow was considerably
small, which would underestimate the actual stemflow
input per unit area because stemflow only concentrates
within a small area around tree trunks instead of the stand
area (Levia and Frost, 2003). The concentrated stemflow
Hydrol. Process. 29, 793–804 (2015)
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are important inputs of water and nutrients to the soils.
Liang et al. (2007, 2009), for example, have presented a
coupled mechanism termed ‘double-funneling’, which led
to a stemflow-induced preferential infiltration process
along root pathways. Silva and Rodríguez (2010) have
reported that stemflow concentrations were enriched with
leaching nutrients of Cu, Fe, Mn and Zn compared with
gross rainfall concentrations in a pine forest (Pinus
pseudostrobus Lindl.). Apparently, the effects of
stemflow serving as highly localized inputs of rainfall
on the spatial distributions of soil water and solutes in
forested ecosystems cannot be ignored.
Total stemflow volumes among individual trees were

different from each other. Variability of stemflow within
the same tree species is commonly resulted from the
differences in canopy size and tree architecture (Levia and
Frost, 2003). The positive relationship between SVR and
PCA and DBH showed that stemflow generation
generally increased with the increase in crown and stem
sizes, which indicates the variability of stemflow among
trees was mainly attributed to differences in tree size.
However, the small sample size (eight trees) and
relatively low coefficient of determination suggests
that this conclusion has to be treated with a degree of
caution. That’s because the difference in stemflow
yields can be also due to architectural variables not
measured in our study, e.g. branch angles and flow path
obstructions (Ford and Deans, 1978). However, this
study supported the findings by Llorens et al. (1997)
that indicate tree size does affect stemflow yields. More
trees should be studied in the future to confirm the
conclusion and investigate the effect of tree architecture
on stemflow production.

Interception loss estimation

Interception loss by the pine plantation as measured in
the present study (21.1% of gross rainfall) was in the low
range of observed values in other coniferous forests,
mainly ranging from 20% to 40% (Carlyle-Moses, 2004;
Komatsu et al., 2010), which was possibly due to the low
canopy coverage and LAI in the young pine plantation.
The relative error for the interception loss estimate was
high due to the sampling errors on throughfall and
stemflow. Because stemflow was relatively small, the
major errors were considered from the throughfall
measurements (Llorens et al., 1997). To reduce the
confidence interval on the interception estimate to below
10%, it would require an increase in sample size of
between threefold and fourfold of throughfall rain gauges,
especially for small rainfall events. Instead of employing
a large number of rain gauges to integrate the variability
of throughfall and minimize the sample errors, rovers or
troughs are two feasible options to apply as suggested
before. Compared with broadleaf forests, conifers
Copyright © 2014 John Wiley & Sons, Ltd.
generally produce higher rainfall interception losses
mainly due to their higher canopy storage capacity
(Carlyle-Moses, 2004), which indicate that the conver-
sions from native forests to commercial pine plantations
may result in a reduction in the soil water availability of
these forested ecosystems.
CONCLUSIONS

As presented in this work, annual gross rainfall in the
subtropical pine plantation was partitioned as follows:
77.9% throughfall, 1.0% stemflow and 21.1% interception
loss. The spatial variability of gross rainfall over a small plot
(50m� 50m) in subtropical coastal areas was found
minimal. Throughfall proved to be spatially heterogeneous,
but the spatial patterns persisted among most individual
rainfall events. Interception of inclined rainfall by tree
crowns appeared to be the main driver of the spatial patterns
of throughfall and nearly single prevailing wind direction
caused stability of these patterns. The total stemflow
volumes per tree were variable. The variability of stemflow
was more related to the tree size (canopy area and stem
diameter) than meteorological variables. This research
suggests that the spatial variability of throughfall and
stemflow in the subtropical pine plantation is sensitive to
meteorological variables and canopy structure, respectively.
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